研究業績Achievements

Ⅱ. 英文原著・総説

  1. Yajima H, Anraku Y, Kaku Y, Kimura KT, Plianchaisuk A, Okumura K, Nakada-Nakura Y, Atarashi Y, Hemmi T, Kroda D, Takahashi Y, Kita S, Sasaki J, Sumita H, ; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ito J, Maenaka K, Sato K, Hashiguchi T. Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1. Nat Commun 15, 8574 (2024). https://doi.org/10.1038/s41467-024-52808-2
  2. Yajima H, Nomai T, Okumura K, Maenaka K, , Ito J, Hashiguchi T, Sato K.  Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio 0:e03220-23.

    https://doi.org/10.1128/mbio.03220-23

  3. Tamura T, Irie T, Deguchi S, Yajima H, Tsuda M, Nasser H, Mizuma K, Plianchaisuk A, Suzuki S, Uriu K, Begum MM, Shimizu R, Jonathan M, Suzuki R, Kondo T, Ito H, Kamiyama A, Yoshimatsu K, Shofa M, Hashimoto R, Anraku Y, Kimura KT, Kita S, Sasaki J, Sasaki-Tabata K, Maenaka K, Nao N, Wang L, Oda Y; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ikeda T, Saito A, Matsuno K, Ito J, Tanaka S, Sato K, Hashiguchi T, Takayama K, Fukuhara T. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Nat Commun. 2024 Feb 8;15(1):1176. doi: 10.1038/s41467-024-45274-3. 
  4. Ito J, Suzuki R, Uriu K, Itakura Y, Zahradnik J, Kimura KT, Deguchi S, Wang L, Lytras S, Tamura T, Kida I, Nasser H, Shofa M, Begum MM, Tsuda M, Oda Y, Suzuki T, Sasaki J, Sasaki-Tabata K, Fujita S, Yoshimatsu K, Ito H, Nao N, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Yamamoto Y, Nagamoto T, Kuramochi J, Schreiber G; Genotype to Phenotype Japan (G2P-Japan) Consortium; Saito A, Matsuno K, Takayama K, Hashiguchi T, Tanaka S, Fukuhara T, Ikeda T, Sato K. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat Commun. 2023 May 11;14(1):2671. doi: 10.1038/s41467-023-38188-z.
  5. *Shirogane Y, Harada H, Hirai Y, Takemoto R, Suzuki T, Hashiguchi T, *Yanagi Y. Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus. Sci Adv. 2023 Jan 27;9(4):eadf3731.
  6. Homma T, Nagata N, Hashimoto M, Iwata-Yoshikawa N, Seki NM, Shiwa-Sudo N, Ainai A, Dohi K, Nikaido E, Mukai A, Ukai Y, Nakagawa T, Shimo Y, Maeda H, Shirai S, Aoki M, Sonoyama T, Sato M, Fumoto M, Nagira M, Nakata F, Hashiguchi T, Suzuki T, *Omoto S, *Hasegawa H. Immune response and protective efficacy of the SARS-CoV-2 recombinant spike protein vaccine S-268019-b in mice. Sci Rep. 2022 Dec 2;12(1):20861.
  7. Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Anraku Y, Kimura I, Ito J, Yamasoba D, Nasser H, Toyoda M, Nagata K, Uriu K, Kosugi Y, Fujita S, Shofa M, Monira Begum M, Shimizu R, Oda Y, Suzuki R, Ito H, Nao N, Wang L, Tsuda M, Yoshimatsu K, Kuramochi J, Kita S, Sasaki-Tabata K, Fukuhara H, Maenaka K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Ueno T, Schreiber G, Takaori-Kondo A; Genotype to Phenotype Japan (G2P-Japan) Consortium, Shirakawa K, Sawa H, Irie T, Hashiguchi T, Takayama K, Matsuno K, Tanaka S, Ikeda T, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host Microbe. 2022 Nov 9;30(11):1540-1555.e15. doi: 10.1016/j.chom.2022.10.003.
  8. Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, Mitoma S, Ito J, Nasser H, Zahradnik J, Uriu K, Fujita S, Kosugi Y, Wang L, Tsuda M, Kishimoto M, Ito H, Suzuki R, Shimizu R, M.S.T. Begum M, Yoshimatsu K, Kimura KT, Sasaki J, Tabata KS, Yamamoto Y, Nagamoto Y, Kanamune J, Kobiyama K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Shirakawa K, Kondo AT, Kuramochi J, Schreiber G, Ishii KJ, *Hashiguchi T, *Ikeda T, *Saito A, *Fukuhara T, *Tanaka S, *Matsuno K, *Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants including BA.4 and BA.5. Cell. 2022. doi: 10.1016/j.cell.2022.09.018 *責任著者
  9. Hemmi T, *Ainai A, Hashiguchi T, Tobiume M, Kanno T, Iwata-Yoshikawa N, Iida S, Sato Y, Miyamoto S, Ueno A, Sano K, Saito S, Shiwa-Sudo N, Nagata N, Tamura K, Suzuki R, Hasegawa H, Suzuki T. Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology. Vaccine. 2022 Aug 26:S0264-410X(22)01038-6. doi: 10.1016/j.vaccine.2022.08.049.
  10. *Ozawa T#, Tani H#, Anraku Y#, Kita S, Igarashi E, Saga Y, Inasaki N, Kawasuji H, Yamada H, Sasaki SI, Somekawa M, Sasaki J, Hayakawa Y, Yamamoto Y, Morinaga Y, Kurosawa N, Isobe M, Fukuhara H, Maenaka K, Hashiguchi T, Kishi H, Kitajima I, Saito S, *Niimi H. Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants. MAbs. 2022 Jan-Dec;14(1):2072455. doi: 10.1080/19420862.2022.2072455.
  11. Hasegawa T, Imamura RM, Suzuki T, Hashiguchi T, Nomura T, Otsuguro S, Maenaka K, Sasaki M, Orba Y, Sawa H, Sato A, Okabe T, Nagano T, *Kojima H. Application of Acoustic Ejection MS System to High-Throughput Screening for SARS-CoV-2 3CL Protease Inhibitors. Chem Pharm Bull (Tokyo). 2022, 70(3), 199-201.
  12. Takemoto R, Suzuki T, Hashiguchi T, *Yanagi Y, *Shirogane Y. Short-stalk isoforms of CADM1 and CADM2 trigger neuropathogenic measles virus-mediated membrane fusion by interacting with the viral hemagglutinin. J Virol 2022, 96(3), e0194921.
  13. Forgione RE, Di Carluccio C, Milanesi F, Kubota M, Fabregat Nieto F, Molinaro A, Hashiguchi T, Francesconi O, *Marchetti R, *Silipo A. Characterization of Natural and Synthetic Sialoglycans Targeting the Hemagglutinin-Neuraminidase of Mumps Virus. Front Chem 2021, 9, 711346.
  14. *Matsuoka K, Kaneshima T, Adachi R, Sasaki J, Hashiguchi T, Koyama T, Matsushita T, Hatano K. Preparation of glycopolymers having sialyl α2 3 lactose moieties as the potent inhibitors for mumps virus. Bioorg Med Chem Lett 2021, 52, 128389.
  15.  *Kubota M, and *Hashiguchi T. Unique Tropism and Entry Mechanism of Mumps Virus. Viruses 2021, 13(9), 1746
  16. Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, Sakakibara S, Inoue T, Tadokoro T, Anraku Y, Yumoto K, Tian G, Fukuhara H, Sasaki M, Orba Y, Shiwa N, Iwata N, Nagata N, Suzuki T, Sasaki J, Sekizuka T, Tonouchi K, Fukushi S, Satofuka H, Kazuki Y, Sun L, Oshimura M, Kurosaki T, Kuroda M, Matsuura Y, Suzuki T, Sawa H, Hashiguchi T, *Maenaka K, and *Takahashi Y. A SARS-CoV-2 Antibody Broadly Neutralizes SARS-related Coronaviruses and Variants by Coordinated Recognition of a Virus Vulnerable Site. Immunity
  17. Kaku Y, Kuwata T, Zahid HM, Hashiguchi T, Noda T, Kuramoto N, Biswas S, Matsumoto K, Shimizu M, Kawanami Y, Shimura K, Onishi C, Muramoto Y, Suzuki T, Sasaki J, Nagasaki Y, Minami R, Motozono C, Toyoda M, Takahashi H, Kishi H, Fujii K, Tatsuke T, Ikeda T, Maeda Y, Ueno T, Koyanagi Y, Iwagoe H, *Matsushita S. Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19. Cell Rep 2021 Jul 13;36(2):109385. doi: 10.1016/j.celrep.2021.109385.
  18.  *Shirogane Y, Takemoto R, Suzuki T, Kameda T, Nakashima K, Hashiguchi T, *Yanagi Y. CADM1 and CADM2 triggers neuropathogenic measles virus-mediated membrane fusion by acting in cis. J Virol 2021 Apr 28:JVI.00528-21.
  19. Ikegame S, Hashiguchi T, Hung CT, Dobrindt K, Brennand KJ, Takeda M, *Lee B. Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proc Natl Acad Sci U S A 2021 May 4;118(18):e2026027118.
  20. Ohashi H, *Watashi K, Saso W, Shionoya K, Iwanami S, Hirokawa T, Shirai T, Kanaya S, Ito Y, Kim KS, Nomura T, Suzuki T, Nishioka K, Ando S, Ejima K, Koizumi Y, Tanaka T, Aoki S, Kuramochi K, Suzuki T, Hashiguchi T, Maenaka K, Matano T, Muramatsu M, Saijo M, Aihara K, Iwami S, Takeda M, McKeating JA, Wakita T. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 2021 Apr 23;24(4):102367.
  21. Tomita Y, Matsuyama S, Fukuhara H, Maenaka K, Kataoka H, Hashiguchi T, *Takeda M. The physiological TMPRSS2 inhibitor HAI-2 alleviates SARS-CoV-2 infection. J Virol 2021 Mar 31:JVI.00434-21.
    Kubota M, *Hashiguchi T. Large-Scale Expression and Purification of Mumps Virus Hemagglutinin-Neuraminidase for Structural Analyses and Glycan-Binding Assays. Methods Mol Biol. 2020;2132:641-652.
  22. Ueo A, Kubota M, Shirogane Y, Ohno S, Hashiguchi T, *Yanagi Y. Lysosome-associated membrane proteins support the furin-mediated processing of the mumps virus fusion protein. J Virol. 2020 Apr 15. pii: JVI.00050-20.
  23. Forgione RE, Carluccio CD, Kubota M, Manabe Y, Fukase K, Molinaro A, Hashiguchi T, *Marchetti R, *Silipo A. Structural basis for glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Sci Rep. 2020 Jan 31;10(1):1589.
  24. Kubota M, Okabe I, Nakakita SI, Ueo A, Shirogane Y, Yanagi Y, *Hashiguchi T. Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. J Virol. 2020;94(2). pii: e01732-19. p1-11.
  25. Shirogane Y, Hashiguchi T, *Yanagi Y. Weak cis and trans interactions of the hemagglutinin with receptors trigger fusion proteins of neuropathogenic measles virus isolates. J Virol. 2020;94(2). pii: e01727-19.
  26. Tadokoro T, Jahan ML, Ito Y, Tahara M, Chen S, Imai A, Sugimura N, Yoshida K, Saito M, Ose T, Hashiguchi T, Takeda M, Fukuhara H, *Maenaka K. Biophysical characterization and single-chain Fv construction of a neutralizing antibody to measles virus. The FEBS journal. 2020;287(1):145-159.
  27. Mathieu C, Ferren M, Jurgens E, Dumont C, Rybkina K, Harder O, Stelitano D, Madeddu S, Sanna G, Schwartz D, Biswas S, Hardie D, Hashiguchi T, Moscona A, Horvat B, Niewiesk S, *Porotto M. Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. J Virol. 2019;93(8). pii: e01862-18. p1-14.
  28. Kubota M, Matsuoka R, Suzuki T, Yonekura K, Yanagi Y, *Hashiguchi T. Molecular Mechanism of the Flexible Glycan Receptor Recognition by Mumps Virus. J Virol. 2019;93(15). pii: e00344-19. p1-13.
  29. Fukuhara H, Ito Y, Sako M, Kajikawa M, Yoshida K, Seki F, Mwaba MH, Hashiguchi T, Higashibata MA, Ose T, Kuroki K, Takeda M, *Maenaka K. Specificity of Morbillivirus Hemagglutinins to Recognize SLAM of Different Species. Viruses. 2019;11(8). pii: E761. p1-12
  30. Angius F, Smuts H, Rybkina K, Stelitano D, Eley B, Wilmshurst J, Ferren M, Lalande A, Mathieu C, Moscona A, Horvat B, Hashiguchi T, *Porotto M, *Hardie D. Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. J Virol. 2019;93(4). pii: e01700-18. p1-13.
  31. Watanabe S, Shirogane Y, Sato Y, Hashiguchi T, Yanagi Y. New Insights into Measles Virus Brain Infections. Trends Microbiol. 2019;27(2):164-75.
  32. Sato Y, Watanabe S, Fukuda Y, Hashiguchi T, Yanagi Y, *Ohno S. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. J Virol. 2018;92(6). pii: e02166-17. p1-11.
  33. Koga R, Kubota M, Hashiguchi T, Yanagi Y, *Ohno S. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane. J Virol. 2018;92(10). pii: e00181-18. p1-11.
  34. *Hashiguchi T, Fukuda Y, Matsuoka R, Kuroda D, Kubota M, Shirogane Y, Watanabe S, Tsumoto K, Kohda D, Plemper RK, *Yanagi Y. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors. Proc Natl Acad Sci U S A. 2018;115(10):2496-501.
  35. Sangha AK, Dong J, Williamson L, Hashiguchi T, Saphire EO, Crowe JE Jr, *Meiler J. Role of Non-local Interactions between CDR Loops in Binding Affinity of MR78 Antibody to Marburg Virus Glycoprotein. Structure. 2017;25(12):1820-8.
  36. Kubota M, *Takeuchi K, Watanabe S, Ohno S, Matsuoka R, Kohda D, Nakakita SI, Hiramatsu H, Suzuki Y, Nakayama T, Terada T, Shimizu K, Shimizu N, Shiroishi M, Yanagi Y, *Hashiguchi T. Trisaccharide containing alpha2,3-linked sialic acid is a receptor for mumps virus. Proc Natl Acad Sci U S A. 2016;113(41):11579-84.
  37. Fusco ML, Hashiguchi T, Cassan R, Biggins JE, Murin CD, Warfield KL, Li S, Holtsberg FW, Shulenin S, Vu H, Olinger GG, Kim DH, Whaley KJ, Zeitlin L, Ward AB, Nykiforuk C, Aman MJ, Berry JD, *Saphire EO. Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs. PLoS pathogens. 2015;11(6):e1005016. p1-17
  38. Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, Matsuoka R, Kohda D, Yanagi Y, Hammel M, Crowe JE Jr, *Saphire EO. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell. 2015;160(5):904-12.
  39. Flyak AI, Ilinykh PA, Murin CD, Garron T, Shen X, Fusco ML, Hashiguchi T, Bornholdt ZA, Slaughter JC, Sapparapu G, Klages C, Ksiazek TG, Ward AB, Saphire EO, Bukreyev A, *Crowe JE Jr. Mechanism of human antibody-mediated neutralization of marburg virus. Cell. 2015;160(5):893-903.
  40. Nakashima M#, Shirogane Y#, Hashiguchi T#, *Yanagi Y. Mutations in the putative dimer-dimer interfaces of the measles virus hemagglutinin head domain affect membrane fusion triggering. J Biol Chem. 2013;288(12):8085-91.
  41. Olal D, Kuehne AI, Bale S, Halfmann P, Hashiguchi T, Fusco ML, Lee JE, King LB, Kawaoka Y, Dye JM Jr, *Saphire EO. Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus. J Virol. 2012;86(5):2809-16.
  42. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, *Yanagi Y. Crystallization strategy for the glycoprotein-receptor complex between measles virus hemagglutinin and its cellular receptor SLAM. Protein and peptide letters. 2012;19(4):468-73.
  43. Bale S, Dias JM, Fusco ML, Hashiguchi T, Wong AC, Liu T, Keuhne AI, Li S, Woods VL Jr, Chandran K, Dye JM, *Saphire EO. Structural basis for differential neutralization of ebolaviruses. Viruses. 2012;4(4):447-70.
  44. Hashiguchi T*, Maenaka K, Yanagi Y. Measles virus hemagglutinin: structural insights into cell entry and measles vaccine. Front Microbiol. 2011;2:247. p1-7. *
  45. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, *Yanagi Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol. 2011;18(2):135-41.
  46. Yanagi Y, Takeda M, Ohno S, Hashiguchi T. Measles virus receptors. Curr Top Microbiol Immunol. 2009;329:13-30.
  47. Tahara M, *Takeda M, Shirogane Y, Hashiguchi T, Ohno S, Yanagi Y. Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J Virol. 2008;82(9):4630-7.
  48. Navaratnarajah CK, Vongpunsawad S, Oezguen N, Stehle T, Braun W, Hashiguchi T, Maenaka K, Yanagi Y, *Cattaneo R. Dynamic interaction of the measles virus hemagglutinin with its receptor signaling lymphocytic activation molecule (SLAM, CD150). J Biol Chem. 2008;283(17):11763-71.
  49. Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, Yanagi Y, *Maenaka K. Homogeneous sugar modification improves crystallization of measles virus hemagglutinin. J Virol Methods. 2008;149(1):171-4.
  50. *Takeda M, Tahara M, Hashiguchi T, Sato TA, Jinnouchi F, Ueki S, Ohno S, Yanagi Y. A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol. 2007;81(21):12091-6.
  51. Tahara M, *Takeda M, Seki F, Hashiguchi T, Yanagi Y. Multiple amino acid substitutions in hemagglutinin are necessary for wild-type measles virus to acquire the ability to use receptor CD46 efficiently. J Virol. 2007;81(6):2564-72.
  52. Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, *Yanagi Y, *Maenaka K. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc Natl Acad Sci U S A. 2007;104(49):19535-40. 
  53. *Takeda M, Nakatsu Y, Ohno S, Seki F, Tahara M, Hashiguchi T, Yanagi Y. Generation of measles virus with a segmented RNA genome. J Virol. 2006;80(9):4242-8.
  54. Kurita R, Sasaki E, Yokoo T, Hiroyama T, Takasugi K, Imoto H, Izawa K, Dong Y, Hashiguchi T, Soda Y, Maeda T, Suehiro Y, Tanioka Y, Nakazaki Y, *Tani K. Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells. Stem cells. 2006;24(9):2014-22.