研究業績Achievements

Ⅰ. 代表的論文

  1. Yajima H, Anraku Y, Kaku Y, Kimura KT, Plianchaisuk A, Okumura K, Nakada-Nakura Y, Atarashi Y, Hemmi T, Kroda D, Takahashi Y, Kita S, Sasaki J, Sumita H, ; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ito J, Maenaka K, Sato K, Hashiguchi T. Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1. Nat Commun 15, 8574 (2024). https://doi.org/10.1038/s41467-024-52808-2
  2. Yajima H, Nomai T, Okumura K, Maenaka K, , Ito J, Hashiguchi T, Sato K. Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio 0:e03220-23.

    https://doi.org/10.1128/mbio.03220-23

  3. Tamura T, Irie T, Deguchi S, Yajima H, Tsuda M, Nasser H, Mizuma K, Plianchaisuk A, Suzuki S, Uriu K, Begum MM, Shimizu R, Jonathan M, Suzuki R, Kondo T, Ito H, Kamiyama A, Yoshimatsu K, Shofa M, Hashimoto R, Anraku Y, Kimura KT, Kita S, Sasaki J, Sasaki-Tabata K, Maenaka K, Nao N, Wang L, Oda Y; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ikeda T, Saito A, Matsuno K, Ito J, Tanaka S, Sato K, Hashiguchi T, Takayama K, Fukuhara T. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Nat Commun. 2024 Feb 8;15(1):1176. doi: 10.1038/s41467-024-45274-3.  
  4. Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, Mitoma S, Ito J, Nasser H, Zahradnik J, Uriu K, Fujita S, Kosugi Y, Wang L, Tsuda M, Kishimoto M, Ito H, Suzuki R, Shimizu R, M.S.T. Begum M, Yoshimatsu K, Kimura KT, Sasaki J, Tabata KS, Yamamoto Y, Nagamoto Y, Kanamune J, Kobiyama K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Shirakawa K, Kondo AT, Kuramochi J, Schreiber G, Ishii KJ, *Hashiguchi T, *Ikeda T, *Saito A, *Fukuhara T, *Tanaka S, *Matsuno K, *Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants including BA.4 and BA.5.
    Cell. 2022. doi: 10.1016/j.cell.2022.09.018
  5. Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, Sakakibara S, Inoue T, Tadokoro T, Anraku Y, Yumoto K, Tian G, Fukuhara H, Sasaki M, Orba Y, Shiwa N, Iwata N, Nagata N, Suzuki T, Sasaki J, Sekizuka T, Tonouchi K, Fukushi S, Satofuka H, Kazuki Y, Sun L, Oshimura M, Kurosaki T, Kuroda M, Matsuura Y, Suzuki T, Sawa H, Hashiguchi T, *Maenaka K, and *Takahashi Y. A SARS-CoV-2 Antibody Broadly Neutralizes SARS-related Coronaviruses and Variants by Coordinated Recognition of a Virus Vulnerable Site. 
    Immunity
  6. Ikegame S, Hashiguchi T, Hung CT, Dobrindt K, Brennand KJ, Takeda M, *Lee B. Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes.                                                                                                    Proc Natl Acad Sci U S A 2021 May 4;118(18):e2026027118.
  7. Kubota M, Okabe I, Nakakita SI, Ueo A, Shirogane Y, Yanagi Y, *Hashiguchi T. Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering.
    J Virol. 2020;94(2). pii: e01732-19. p1-11.
  8. Kubota M, Matsuoka R, Suzuki T, Yonekura K, Yanagi Y, *Hashiguchi T. Molecular Mechanism of the Flexible Glycan Receptor Recognition by Mumps Virus.
    J Virol. 2019;93(15). pii: e00344-19. p1-13.
  9. *Hashiguchi T, Fukuda Y, Matsuoka R, Kuroda D, Kubota M, Shirogane Y, Watanabe S, Tsumoto K, Kohda D, Plemper RK, *Yanagi Y. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors.
    Proc Natl Acad Sci U S A. 2018;115(10):2496-501.
  10. Kubota M, *Takeuchi K, Watanabe S, Ohno S, Matsuoka R, Kohda D, Nakakita SI, Hiramatsu H, Suzuki Y, Nakayama T, Terada T, Shimizu K, Shimizu N, Shiroishi M, Yanagi Y, *Hashiguchi T. Trisaccharide containing alpha2,3-linked sialic acid is a receptor for mumps virus.
    Proc Natl Acad Sci U S A. 2016;113(41):11579-84.
  11. Fusco ML, Hashiguchi T, Cassan R, Biggins JE, Murin CD, Warfield KL, Li S, Holtsberg FW, Shulenin S, Vu H, Olinger GG, Kim DH, Whaley KJ, Zeitlin L, Ward AB, Nykiforuk C, Aman MJ, Berry JD, *Saphire EO. Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs.
    PLoS pathogens. 2015;11(6):e1005016. p1-17​​​​​​​
  12. Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, Matsuoka R, Kohda D, Yanagi Y, Hammel M, Crowe JE Jr, *Saphire EO. Structural basis for Marburg virus neutralization by a cross-reactive human antibody.​​​​​​​
    Cell. 2015;160(5):904-12.
  13. Flyak AI, Ilinykh PA, Murin CD, Garron T, Shen X, Fusco ML, Hashiguchi T, Bornholdt ZA, Slaughter JC, Sapparapu G, Klages C, Ksiazek TG, Ward AB, Saphire EO, Bukreyev A, *Crowe JE Jr. Mechanism of human antibody-mediated neutralization of marburg virus.​​​​​​​​​​​​​​
    Cell. 2015;160(5):893-903.​​​​​​​
  14. Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, *Yanagi Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM.​​​​​​​​​​​​​​
    Nat Struct Mol Biol. 2011;18(2):135-41.
  15. Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, *Yanagi Y, *Maenaka K. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines.​​​​​​​​​​​​​​
    Proc Natl Acad Sci U S A. 2007;104(49):19535-40.